
Chapter 2: Managing Hardware Devices

Objectives

- Understand the importance of managing hardware
- Understand the purpose of device drivers
- Configure hardware resource settings and resolve resource setting conflicts
- Configure driver signing options
- Optimize server processor and memory usage
- Create and configure hardware profiles
- Configure server power options
Introduction to Managing Hardware

- Managing and maintaining hardware is a primary responsibility of a network administrator
- A wide variety of internal and external hardware components available
- Key concepts to be discussed
 - Hardware compatibility
 - Device drivers
 - Device Manager

Hardware Compatibility

- Server hardware must meet minimum system requirements for Windows Server 2003
- Microsoft maintains information about compatible hardware
 - Previous Windows versions: Hardware Compatibility List
 - Windows Server 2003: Windows Server Catalog
Understanding Device Drivers

- A **device driver** is a software interface between an operating system and a hardware device
- Generally want to use the specific recommended driver for a device
 - Affects stability and performance
- Driver updates are frequent and usually available from manufacturer
- **Driver signing** is used to verify that a driver has been tested

Device Manager

- Primary tool for managing device drivers
- Allows administrator to view and modify hardware device properties
- Should be used soon after Windows Server 2003 installation to verify device detection and functioning
- Accessible from Control Panel or Computer Management tool
Accessing Device Manager

- Control Panel → System → Hardware Tab
- Computer Management → System Tools → Device Manager

Guide to MCSE 70-290, Enhanced

Device Manager (continued)

- Displays non-functioning devices
 - Yellow exclamation point
- Displays manually disabled devices
 - Red x
- Allows you to update drivers
 - Download driver and install through Device Manager
 - Use Hardware Update Wizard
Adding New Devices

- Two main categories of devices
 - Plug and Play
 - Legacy
- Plug and Play devices typically installed and configured automatically
- Legacy devices typically configured manually

Plug and Play Devices

- Windows Server 2003 is Plug and Play compliant
- New hardware is usually Plug and Play
- Installed devices detected automatically
- Detected devices configured automatically
 - May need to locate or update device driver
Legacy Devices

- Many older devices not Plug and Play
- Industry Standard Architecture (ISA) bus devices not Plug and Play
- May or may not be detected by Windows Server 2003
- Typically must be configured manually
- Add Hardware Wizard used to install and/or configure

Hardware Resource Settings

- Four main types of resources
 - Direct Memory Access (DMA) channels
 - Input/Output (I/O) ranges
 - Memory address ranges
 - Interrupt request (IRQ) lines
- Resource settings configured from Resources tab of properties of hardware device in Device Manager
Hardware Resource Settings (continued)

- Manually configured resource settings may have conflicts
- Resource conflicts can cause device malfunction
- Conflicts determined using Device Manager
 - Resources tab for a device

Direct Memory Access Channels

- Allow hardware devices to access system memory (RAM) directly
- Information transfer bypasses CPU
- Common devices
 - Hard and floppy disk controllers
 - Sound cards
 - CD-ROM drives
- DMA channel used by a device can be determined from Device Manager
Input/Output Ranges

- Small dedicated memory areas
- Allocated specifically for data transfer between computer and hardware device
- Type of device dictates size of memory area
- I/O ports can be determined from Device Manager

Interrupt Request Lines

- Used to gain attention of the system processor to handle some event
- Traditionally, each device had dedicated line
- Trend is toward sharing lines, Windows Server 2003 supports sharing among some Plug and Play devices
- IRQ lines can be viewed and managed from Device Manager
Memory Addresses

- Used for communication between a hardware device and the operating system
- Devices configured with dedicated, unique memory address ranges
- Windows Server 2003 will automatically allocate memory addresses for Plug and Play devices
- For legacy devices, address ranges usually specified in documentation

Troubleshooting Resource Setting Conflicts

- Manual configuration of devices can lead to resource conflicts (overlaps and duplication of assignments)
- Two methods for checking for resource conflicts
 - Resources tab in properties of device using Device Manager
 - System Information tool
 - To open, type msinfo32.exe in Run command
 - Or
 - Start / All Programs / Accessories / System Tools / System Information
Configuring Device Driver Signing

- Every built-in driver in Windows Server 2003 is digitally signed by Microsoft
- Signing ensures compatibility, quality, authenticity, verified to work with hardware
- Three possible driver signing verification options
 - Ignore: install any driver whether signed or not
 - Warn: show warning if attempt is made to install unsigned driver
 - Block: don’t allow installation of unsigned driver

Roll Back Driver Feature

- Common for vendors to release new or updated drivers for hardware devices
 - Fix known issues, take advantage of updated features
 - Driver updates sometimes result in system stability problems
 - When update causes problems, roll back allows going back to a previous version
Configuring Processor and Memory Settings

- Three basic areas to configure for optimal performance
 - Processor scheduling and memory usage
 - Virtual memory
 - Memory for network performance

Processor Scheduling

- Allows you to configure how processor resources are allocated to programs
- Default is Background services (all running applications receive equal processor time)
- Can set to Programs (foreground application receives priority processor time)
Processor Scheduling (continued)

- Memory usage options used to configure amount of system memory allocated to executing programs versus other server functions
- Default is System cache option
 - Computer is acting as network server
 - Running programs that require considerable memory
- Programs option
 - Computer is acting as workstation
 - Running programs at console

Virtual Memory

- Disk storage used to expand RAM capacity
- Slower than RAM
- Uses **paging** technique
 - Blocks (pages) of information moved from RAM to virtual memory on disk
 - Paged out when not in use, reloaded into RAM when needed
Virtual Memory (continued)

- Area allocated is called **paging file**
- Default amount allocated when operating system installed but should be tuned by administrator
 - Microsoft recommends that the total size of the page file be 1.5 times the amount of physical RAM.
- Name of paging file is pagefile.sys
- Location of paging file important
- Two important parameters: initial and maximum size

Memory for Network Performance

- Memory is used both server functions and network connectivity functions
- Server functions use memory and paging
- Network connectivity uses only memory
- If performance is poor, may need to tune network memory parameters
Configuring Server Memory for Network Optimization

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimize memory used</td>
<td>Optimizes the memory used on servers with 10 or fewer simultaneous network users</td>
</tr>
<tr>
<td>Balance</td>
<td>Optimizes memory use for a small LAN with about 64 or fewer users</td>
</tr>
<tr>
<td>Maximize data throughput for file sharing</td>
<td>Used for a large network with over 64 users where file and print serving resources need more memory allocation to make the server efficient</td>
</tr>
<tr>
<td>Maximize data throughput for network applications</td>
<td>Used in servers that primarily handle network connections and to reduce paging activity when this affects server performance, such as on a server that mainly authenticates users to the network or that handles databases that distribute functions to the client (in client/server systems)</td>
</tr>
<tr>
<td>Make browser broadcasts to LAN manager 2 x clients</td>
<td>Used for networks that have both Windows Server 2003 and the Microsoft (and IBM) early server operating system, LAN Manager</td>
</tr>
</tbody>
</table>

These settings are available from File and Printer Sharing Properties (Properties of Local Area Connections)

Guide to MCSE 70-290, Enhanced

Hardware Profiles

- Set of instructions defining which devices to start and drivers to load when computer starts
- Profile 1 created when Windows Server 2003 installed, every device enabled
- Portable computers change set of hardware device available at different times
- Can create additional profiles to match situation
Configuring Power Options

- Default power scheme is Always On (monitor off after 20 minutes, hard disks never off)
 - Can select other predefined schemes or create custom scheme
- Standby mode
 - Components shut down and memory is not written to disk (if power goes out, memory information is lost)
 - Power supply and CPU remain active

Configuring Power Options (continued)

- Hibernate mode
 - Memory contents saved before shutting down disks
 - Can restart with previous applications running
- Uninterruptible power supply (UPS)
 - Battery backup device
 - Best fault-tolerance method to prevent damage with power loss
 - Can only sustain power for a limited time
Summary

• Device drivers
 • Driver signing
 • Driver roll back
• Device Manager tool
 • Primary tool for device management
• Plug and play versus legacy devices
 • Installation and configuration

Summary (continued)

• Hardware Resource Settings
 • Direct Memory Access (DMA) channels
 • Input/Output (I/O) ranges
 • Memory address ranges
 • Interrupt request (IRQ) lines
• Processor Scheduling and Memory Usage
 • Virtual memory
 • Network memory
• Hardware Profiles
• Power Options